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ABSTRACT

The difference between microstrip coupled line filter de-
signs using quasi-static and full-wave analyses on LaAlO;
is discussed. Comparative data for CAD predictions and
direct measurement for selected microstrip discontinu-
ities on LaAlO; substrates is presented, as well as mea-
sured and predicted filter performance.

INTRODUCTION

The fabrication of high quality high-temperature su-
perconducting (HTS) thin films depends on several im-
portant parameters. One of the parameters critical to
the high frequency performance of the HTS films is the
choice of substrate material. The material most com-
monly used is LaAlOs which has a loss tangent ~ 10—
at 77 K and ¢, ~ 23 [1]. The low loss tangent makes this
a teasonable substrate for high frequency applications.

Unfortunately, typical microwave analysis software has
limited accuracy for substrates with dielectric constants
greater than ¢, = 18 [2]. Accurate analyses of filter ele-
ments are particularly affected by these limitations be-
cause of their interaction through substrate radiation.
Proper design of a filter structure utilizing superconduct-
ing elements is extremely important because a major part
of the insertion losses of the filter could be due to reflec-
tion losses.

Recent fabrication and testing has demonstrated prob-
lems with the design of parallel line coupled bandpass fil-
ters in the Ku frequency band on LaAlQ3. Previous filter
design using the same procedures at X-band frequencies
showed remarkable success [3], and compared well with
the performance predicted by Touchstone [2]. The design
of superconducting microstrip matching networks needed
for low noise amplifiers (LNAs) or stable oscillators will
have similar difficulties if the matching network uses cou-
pling elements. In this paper we present data showing
the difficulties mentioned above, and possible solutions
to these problems.
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PARALLEL-COUPLED BANDPASs FILTER

The design of the filters was accomplished by stan-
dard techniques using a low-pass prototype to determine
a set of even and odd impedances [4]. Impedence in-
verters must then be designed to satisfy the even and
odd impedances required by the filter. One of the most
common types of impedance inverters used is a pair of
coupled microstrip lines.

There are several methods to used to design the phys-
ical dimensions of the coupled microstrip lines. Two
widely used methods [5], [6] are implemented by Touch-
stone , however, these methods are quasi-static and the
range of dielectric constant limited to ¢, < 18. A com-
parison of coupled line performance between a full-wave
analysis 7] and a quasi-static analysis {2] showed signif-
icant disagreement. A four-pole coupled line filter con-
sisting of five ideal coupled line elements was designed
for a center frequency of 13 GHz, 2% bandwidth, .001
db ripple. The effect of this disagreement is shown in
Figure 1, where a single pair of filter elements in the 4-
pole 2% ideal coupled line filter has been modified by the
difference between the two analyses. This increased in-
sertion loss is solely due to the increased reflection loss
as a result of the the error in modeling the coupled line
filter element.
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Figure 1: Frequency Response for a 4-Pole 2%

Bandwidth Ideal Element Bandpass Bandpass Filter
Using Odd/Even Mode Impedances Determined by
Quasi-Static and Full-Wave Analysis
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Figure 2: Error In Odd-Mode Impedance Calculated by
Quasi-Static Analysis as Compared to Full-Wave Analy-
sis (Dimensions in .001”)

The difference between the two analyses when calcu-
lating the even and odd impedances of coupled microstrip
lines is shown in Figure 2 and Figure 3 respectively. The
data shown here is for a .020” thick LaAlO; substrate,
and the widths and spacings are those most likely used
in a 2% bandpass filter.

FILTER PERFORMANCE

We fabricated two filters using quasi-static designs
with 2% and 10% bandwidth, .01 dB ripple, f,=13 GHz,
with gold (Au) and YBCO HTS material. All four fil-
ters showed poor performance with regards to ripple and
return loss. Measurement performance of the gold 10%
bandwidth filter is shown in Figure 4.
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Figure 4: Comparison of Quasi-static and Measured
Results for a 4-Pole Coupled-Line Microstrip Filter on
LaAlOs Substrate

The performance was considerably different from the
performance indicated by Touchstone. The primary rea-
son for the poor performance predicted by quasi-static
methods is the poor modeling of the coupling through
the high dielectric substrate. A study of individual mi-
crostrip discontinuites reveals similar results.
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Figure 3: Error In Even-Mode Impedance Calculated by
Quasi-Static Analysis as Compared to Full-Wave Analy-
sis (Dimensions in .001")

A new design was performed using the results of full-
wave analysis and a new filter was fabricated in Au on
a .020” thick LaAlOs substirate. The performance pre-
dicted by full-wave analysis (loss-less case) is shown with
the measured results Figure 5.
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Figure 5: Comparison of Full-Wave and Measured Re-
sults for a 4-Pole Coupled-Line Microstrip Filter on
LaAlQ3 Substrate

MICROSTRIP DISCONTINUITIES

We selected for measurement, several microstrip dis-
continunities that would commonly be used for a microwave
integrated circuit (MIC). The discontinuities selected were
a gap, rectangular stub, radial stub, and parallel line DC
block (Figure 6).

Individual microstrip discontinuities were fabricated
on .020” LaAlO; substrates, measured in a modified De-
sign Technique fixture, and calibrated with a two-tier
LRL calibration procedure [8] [9]. All line widths leading
to the discontinuities were .008”. The gap element was
-008” wide, the stub element .008” wide by .016” long,
the DC block was .060” long with a .002” gap, and the
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Figure 6: Microstrip Discontinuities

line stub dimensions were .065” x .002” x 45°. Results
for the DC block, gap, and stub elements are shown be-
low for measured (MS***), full-wave analysis (EM***),
and quasi-static analysis (TS***) in Figures 7, 8, and 9.
The coupling of the gap is clearly over estimated by the
quasi-static results, which correlates to the analysis of
the coupled line structure. The agreement between the
full-wave analysis and measurement of the DC-block is
very good, demonstrating a different resonant frequency
than that predicted by quasi-static analysis. The analy-
ses and measurement of the radial line stub discontinuity
show reasonable agreement, since the performance of the
stub is not highly dependent upon substrate coupling.
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Figure 7: Comparison of Sy for a Gap Structure (Au
Film)
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Figure 9: Comparison of Sy for a DC Block Structure
(Au Film)
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